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This chapter IXb of the bibliography contains 205 pages with 1637 references on the geology of areas 
adjacent  to the East and South sides of the Indonesian region, i.e. the SW Pacific, NW and NE Australia and 
the NE Indian Ocean (but not including SE Asia regional and Papua New Guinea and papers, which are 
grouped with Chapters I.2 and VII respectively).  It is subdivided into four chapters. 
 
The reason for including these titles in this Bibliography of Indonesia geology is that the regional geology of 
Indonesian regions can be better understood with knowledge of the geology across its borders. Many 
geological similarities exist between the geology of parts of Indonesia and adjacent regions. Circum-Indonesia 
regions listed in this volume with likely contiguous geology in the Indonesian region include: 
 
- SW Pacific      ties to:     West Papua (north of Central Range) 
- Papua New Guinea      ties to:     West Papua 
- NW Australian margin- Timor Sea    ties to:     Arafura Sea, South Timor, West Papua 
- NE Australian margin     ties to:     Papua New Guinea, W Papua Birds Head. 
 
  IX.10. SW Pacific  (incl. New Caledonia, Solomon Islands) 
 

This chapter of the bibliography contains 567 papers on the SW Pacific region, which, West of the main Pacific 
Ocean plate, is a complex collage of marginal oceanic basins, separated by active and inactive oceanic 
subduction zones/ volcanic arcs. (Figure IX.10.1). It is dotted with numerous volcanic seamounts, the largest 
of which is the Cretaceous Ontong Java Plateau. 
 

 
 

Figure IX.10.1. SW Pacific area marginal basins and active subduction zones (Komiya and Maruyama, 2007). 



Bibliography of Indonesia Geology,  Ed. 7.0        www.vangorselslist.com       July 2018 2 

 
One remarkable feature along the entire West Pacific is the common presence of marginal basins, at both the 
East Asia and East Australia margins, which formed by extension/ seafloor spreading above a retreating 
subduction zone. Most authors view this as driven by slab rollback of Pacific Ocean west-dipping subduction 
system(s). 
 
This chapter includes many papers on New Caledonia, which is a microcontinent that rifted off the NE margin 
of Australia in Cretaceous time and collided with an intra-oceanic arc system in Eocene time, making it one of 
the classic, well-studied examples of 'ophiolite obduction'. 
 
It also includes some regional papers from the New Zealand area and the 'Zealandia' region of deepwater 
submerged continental rises (Lord Howe Rise, Fairway Ridge, Norfolk Ridge) between New Caledonia and 
New Zealand, that all were once part of the long-lived Paleozoic- Triassic accretionary margin of East 
Australia/ NE Gondwana  
 

 
 

Figure IX.10.2. Major elements of the SW Pacific, on satellite gravity map. Continental or thinned continental 
or mixed crust= orange; oceans andmarginal basins= blue and green. (from Glen et al. 2016). The 
composite terrane that combines the Lord Howe Rise, Norfolk Ridge, New Caledonia and New Zealand is 
often called Zealandia, which was part of the Paleozoic- Early Mesozoic East Australian Gondwana 
accretionary margin, until Late Cretaceous opening of the Tasman Sea  
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  IX.14. NE Indian Ocean 
 

This chapter of the bibliography contains 50 references on the NW Indian region, which borders Indonesia 
South and SW of Java and Sumatra. It is an entirely oceanic domain, with ages of oceanic crust varying from 
latest Jurassic (~ 150 Ma) south of Java to Middle Eocene (~43 Ma) off west Sumatra (Figure IX.14.1).  
 

 
 

Figure IX.14.1. Ages of NE Indian Ocean oceanic crust along the Sunda- Java Trench, varying from latest 
Jurassic (~150 Ma) in East, SW of Sumba, to Middle Eocene (<43 Ma) at the extinct spreading center of the 
Wharton Ridge off NW Sumatra (Whittaker et al. 2007). Red arrows: 5 Myr motions direction and distance.  

 
A major feature of this part of the Indian Ocean crust is the Wharton Ridge, an extinct spreading center that 
was active from Late Jurassic to ~43 Ma (e.g. Heine et al. 2004). Most of this ridge has been subducting under 
Java- Sumatra since ~70 Ma (Whittaker et al. 2007), but remnants remain as a bathymetric ridge off NW 
Sumatra today.  
 
The Indian Ocean Plate is currently subducting under Java and Sumatra along the 3200km long Sunda-Java 
trench. The oceanic plate has already completely been consumed East of Sumba, in the Banda Arc- NW 
Australian continental margin collision zone.  
 
The differences in ages of subducting Indian Ocean crust and position of major transform faults may help 
explain some of the observed variations in subduction rates, arc volcanism, dip of subducting plate and lateral 
changes in depths of earthquake activity. 
 
The effect of subduction of the Wharton Ridge under Sumatra between 15-0 Ma was discussed by Whittaker 
et al. (2007). 
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  Seamounts/ volcanic ridges 
Numerous volcanic seamounts have been identified on NE Indian Ocean floor (Taneja and O'Neill 2014), One 
of the larger seamounts formed an island, Christmas Island ~350km south of westernmost Java. The Roo Rise 
Plateau South of East Java is a large, submarine volcanic seamount complex with an area of ~100,000 km2, 
crustal thickness 12-18km, and it rises ~2.0-2.5 km above the surrounding Indian Ocean floor (Figure IX.14.2). 
 
The Roo Rise, is now colliding with the subduction trench South of Java.  It is probably resisting subduction, as 
evidenced by the indentation of ~50 km of the trench/ accretionary prism deformation front. It is associated 
with extensive slumping of slope sediments near the collision zone and is causing uplift of the entire forearc 
region (Masson et al. 1990, Kopp et al. 2006, Shulgin et al. 2011). 
 

 
 
Figure IX.14.2. NE Indian Ocean bathymetry, showing large seamounts (Christmas Island, Roo Rise, etc.) and 
N-S trending fracture zones. 
 
Late Eocene and Pliocene volcanic episodes were identified (Taneja et al. 2015) 
 
  Oceanography 
Many of the papers in this Indian Ocean chapter deal with oceanographic and paleoclimate changes in young 
ocean floor sediments. 
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  IX.15. NW Australian margin 
 

This chapter of the bibliography contains 733 references on the NW Australian continental margin, which is a 
rifted, passive continental margin, created by a Middle-Late Jurassic rift-breakup event.  
 
The geology spans a very wide range of ages from Proterozoic to Recent, mostly in intra-continental rift and 
(since Late Jurassic) passive margin extensional settings. Its unusually thick sediment cover that exceed 
20km. This geologic province continues into the Indonesian region in the Arafura Sea and West Papua (South 
of the Central Range). 
 

 
 

Figure IX.15.1. Tectonic elements of the Australia NW margin (Powell 1982). 
 
The NW Australian margin is now in different stages of collision with the Banda Arc.  
- pre-collisional western part of NW Australia margin (Carnarvon- Browse basins): passive margin facing 

Indian Ocean (Argo Abyssal Plain), with oceanic crust of latest Jurassic- Cretaceous age; 
- syn-collisional: Timor Sea region, where continental crust of the NW margin (Bonaparte- Arafura basins area) 

is currently bending down into the Timor Trench (Timor- Tanimbar Trough- Barakan Basin) as it is 
subducting under the forearc south of the Sumba- Timor- Tanimbar sector of the Banda Arc; 

- post collisional: West Papua sector, rimmed by Central Range folbelt, with obducted ophiolte belt. 
 
An important aspect of the NW Australia margin is its relatively thin Precambrian crust (<20km) and unusually 
thick sediment cover (up to >20km). This appears to be the result of unusually widespread early extensional 
event in Late Carboniferous- Early Permian time, that included excessive lower crustal ductile thinning 
(Etheridge 1992, O'Brien 1993, AGS) 1994). (Figure IX.15.2). 
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Figure IX.15.2. Regional cross-section of Australia NW margin at the Browse basin- Kimberley Block. The 
Moho (top mantle; base red) shallows from ~35 km under the Kimberley Block in SE to ~23 km under 
theBrowse Basin, which is underlain by ~10km thick thinned Precambrian crust (red) and thick 'Westralian' 
Carboniferous- Permian- Triassic interior rift- sag section (up to 8km?; light brown- purple- dark blue). A less 
dramatic Middle Late Jurassic extensional event (light blue sediments) led to the Indian ocean breakup. 
Post-breakup passive margin section is in light green (Cretaceous) and yellow (Cenozoic)  (AGSO 1994). 

 
The NW Shelf has been subdivided in different geological sectors/ basins, that originated as different 
segments of Devonian and Permo-Carboniferous intra-continental rifting systems, separated by transform 
faults.   
 
An interesting model is Figure IX.15.3, showing the different domains of Jurassic asymmetric rifting after the 
Late Jurassic breakup.  It also shows the predicted rift styles at the conjugate margin of the plate that rifted off 
in Late Jurassic time (~155 Ma; the elusive 'Argoland').  
 
 

 
 

Figure IX.15.3. Schematic model of the structural configuration of the NW Shelf/Timor Sea region after 
continental break-up in Late Jurassic time. This cartoon shows an rift system segmented by transform 
faults that separate sectors of different asymmetric rift polarity. It also shows the predicted pre-Cretaceous 
rift configuration of the elusive 'Argoland' terrane, shown here at the top in the early phase of separation 
(O'Brien 1993). 

 



Bibliography of Indonesia Geology,  Ed. 7.0        www.vangorselslist.com       July 2018 7 

The Australia NW Shelf area is a significant oil and gas province. Most of the oil and gas occurrences are in 
Jurassic and Triassic clastic reservoirs in rotated fault blocks below the Lower Cretaceous regional seal. The 
area is mostly a gas province, which for a long time was not a commercially viable commodity, but is now 
home to several LNG export projects. 
 
The NW Australian oil-gas province continues eastward into the Joint Development zone South of Timor Leste 
(with Bayu Undan and Sunrise-Troubadour gas fields) and further East into Indonesian waters, where the 
Abadi gas field was discovered.  
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IX.16. NE Australian margin ('Tasmanides') 
 

This chapter contains 289 references on the geology of the NE and East margin of Australia. This has been 
part of the polyphase, accretionary orogenic margin of Eastern Gondwana in Paleozoic- Triassic time, and its 
geology is very different from the NW Australia margin with its long history of intra-cratonic and and passive 
margin rifting  (Figure IX.16.1). 
 

 
 

Figure IX.16.1. Restored basement terranes of the Australian region. In NW showing hypothetical positions of 
terranes that rifted off the NW margin in Devonian, Permian and Jurassic times and which are now in SE Asia. 
In the NE and East are Paleozoic- Triassic accreted terranes along the active margin of NE Gondwana with its 
long-lived Paleo-Pacific subduction (from Martin Norvick 2002; after Veevers 2000). 
 
The reason for including this in the Indonesia bibliography is because this accretionary belt continues under 
Papua New Guinea South of the main foldbelt, and also in Eastern Indonesia, where the Birds Head of West 
Papua and the Banggai-Sula islands show basement with characteristics of this Paleozoic- Triassic active 
margin. These probably represent microcontinental plates that were dispersed from somewhere along this NE 
margin in Cretaceous- Early Paleogene time (Pigram and Panggabean 1984, Struckmeyer et al. 1993, etc.). 
 
The wide system of accretionary terranes is collectively referred to as the 'Tasmanides' (eg. Glen 2005). They 
form a complicated system of successive foldbelts with multiple accretionary systems with ophiolites, volcanic 
arc terranes, etc. 
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The easternmost, youngest part of Tasmanides system is the New England Orogen, which formed as a result 
of long-lived Late Devonian- Triassic west-dipping subduction of the Panthalassan Ocean (Paleo-Pacific) (e.g. 
Korsch 2004).  
 
The  margin is characterized by: 
1. Active margin tectonostratigraphic assemblage involving Late Silurian- Permian age sediments (e.g. 

Henderson et al. 1993); 
2. Late Permian- Triassic granites (mainly Middle-Late Triassic; 260-220 Ma?), signifying a continental margin 

magmatic arc above a west-dipping subduction zone (Figure IX.16.3). ; 
3. Late Permian- Middle Triassic west-directed thin-skinned folding-thrusting creating imbricated Devonian- 

Permian marine sediments at east margin of Bowen foreland basin margin ('Hunter- Bowen orogeny'; 
Fergusson 1991); 

4. Followed by relative quiescence, except in areas affected by Late Cretaceous- Early Paleogene Tasman 
Sea- Coral Sea rifting/ breakup. 

 
This 'Tasmanide' orogenic belt extends northward as basement of autochthonous Papua New Guinea. and is 
also remarkably similar to basement characteristics of detached terranes now in northern PNG (Kubor, etc.) 
and in Eastern Indonesia (Birds Head of West Papua, Banggai-Sula, etc.; e.g. Pigram and Panggabean 1984, 
Struckmeyer et al. 1993, Amiruddin 2009).  Radiometric ages and detrital zircons from these terranes cluster 
around 240 Ma (Ladinian) (Decker et al. 2017, etc.) 
  
 
 

 
 

Figure IX.16.2.  Cross-section of the Permian- Triassic Bowen basin and New England foldbelt (Korsch 2004). 
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Figure IX.16.3. Permo- Triassic granitic plutons along East Australian margin and in dispersed terranes of 
northern New Guinea (PNG, Birds Head) and Banggai-Sula, marking remnants of mainly Late Permian- 
Middle Triassic magmatic arc/ subduction along the active East Gondwanan margin (Amiruddin 2009).  

 
 
Latest Cretaceous- Early Paleogene extension 
The eastern part of the Tasmanides collapsed in Late Cretaceous- E Paleogene time, leading to opening of 
the Tasman Sea and Coral Sea marginal oceanic basins. This caused the separation of large sections of the 
former accretionary margin from the East Australian margin, which are now the the vast area of the mostly 
submerged 'Zealandia' terranes (Lord Howe Rise, Fairway Ridge, Norfolk Ridge, Torlesse Terrane, etc.) and 
NE to New Caledonia (see also SW Pacific chapter). 
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Figure IX.16.4. Correlation of Paleozoic- Early Mesozoic orogens ('Tasmanides') between the East Australia 
margin and the 'Zealandia' rifted terranes, that separated from East Gondwana/ Australia after Cretaceous- 
Early Paleogene opening of the Tasman Sea (Li et al. 2012). 

 
Expressions of this Late Cretaceous- Early Paleogene rift event can be expected in the terranes that rifted off 
this part of the NE Australian margin and ended up in northern New Guinea and Eastern Indonesia (although 
probably not in the same non-marine facies as East Queensland).  One likely candidate in the Indonesian 
region is in the eastern Birds Head- Bintuni Basin, where there is a well-documented thickening and 
deepening facies of the latest Cretaceous (Maastrichtian-) earliest Eocene interval. This sand-bearing section 
is usually called Waripi Formation, is up to ~3000' thick (thickest in NNW, and thought to be sourced from 
there), mainly composed of deep marine clastics and contains gas reservoirs in Paleocene turbidite 
sandstones in the Wiriagar Deep gas field (e.g. Mardani and Butterworth 2016). 
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IXb. CIRCUM-INDONESIA (SW Pacific, NW and NE Australia) 
 
 

IX.10. SW Pacific (incl. New Caledonia, Solomon Islands)  
 

Acharya, H.K. (1979)- Seismicity of the Southern Philippine Sea. Marine Geology 29, p. 25-32. 
(Philippine Sea Plate almost completely surrounded by island arcs. Earthquake activity in S Philippine Sea at 
low-to-moderate levels at Palau-Kyushu Ridge, Central Basin Fault and W Philippine Basin) 
 
Adachi, Y., H. Inokuchi, Y. Otofuji, N. Isezaki & K. Yaskawa (1987)- Rotation of the Philippine Sea Plate 
inferred from paleomagnetism of the Palau and Yap islands. Rock magnetism and paleogeophysics, Japan, 14, 
p. 72-74. 
(online at: 
 http://peach.center.ous.ac.jp/rprep/Rock%20Magnetism%20and%20Paleogeophysics%20vol14%201987.pdf) 
(Paleomag work on 16 sites in Palau Islands on S end of Kyushu-Palau Ridge suggest ~60°CW rotation, similar 
to results from other parts of W Philippine Sea) 
 
Adams, C.J. (2010)- Accretionary complexes in eastern Australia and New Zealand: matching their sediment 
sources and destinations. In: S. Buckman & P.L. Blevin (eds.) Proc. Conf. New England Orogen 2010 (NEO 
2010), Armidale, p. 5-11. 
(Accretionary rocks of Carboniferous-Cretaceous in Torlesse Terrane of New Zealand derived from continental 
sources of plutonic and metamorphic rocks. Sources must be dominated by Permian-Triassic granitoids, and 
thought to originate at E Australian continental margin. Detrital zircon age patterns in sandstones from New 
England Orogen (NEO) and Torlesse Terrane suggest common sediment sources in Carboniferous magmatic 
arcs in NEO, but Late Permian-Cretaceous of Torlesse with major 230-265 Ma age peak suggests displacement 
of accretionary activity, outboard of NEO in Middle-Late Permian, after E Permian rift event) 
 
Adams, C.J. (2011)- Lost terranes of Zealandia: possible development of late Paleozoic and early Mesozoic 
sedimentary basins at the Southwest Pacific margin of Gondwanaland, and their destination as terranes in 
southern South America. Andean Geol. 37, 2, p. 442-454. 
(Metasedimentary rocks in Chilean archipelago have significant Mesoproterozoic, latest Neoproterozoic-
Cambrian and Devonian-Carboniferous detrital zircon age components in common with 'lost terranes of 
Zealandia') 
 
Adams, C.J., M.E. Barley, I.R. Fletcher & A.L. Pickard (1998)- Evidence from U-Pb zircon and 40Ar/39Ar 
muscovite detrital mineral ages in metasandstones for movement of the Torlesse suspect terrane around the 
eastern margin of Gondwanaland. Terra Nova 10, 4, p. 183-189. 
(Detrital zircon and Ar/Ar muscovite ages from Triassic metasandstones of New Zealand Torlesse Terrane 
four components: (1) major Triassic-Permian (210-270 Ma), (2) minor Permian-Carboniferous (280-350 Ma) 
granitoids, (3) minor E-M Paleozoic metamorphics (420-460 Ma) and (4) minor Late Precambrian-Cambrian 
igneous and metamorphic complexes (480-570 Ma). Ages compatible with granitoid terranes of N New 
England Orogen in NE Australia. Torlesse Terrane originated at NE Australian margin, then moved 2500 km 
S by Late Cretaceous (90 Ma) (Conclusion questioned by Murray (2003): although similar age range, little or 
no muscovite in Permian Triassic granites of New England foldbelt)) 
 
Adams, C.J., H.J. Campbell, I.J. Graham & N. Mortimer (1998)- Torlesse, Waipapa and Caples suspect terranes 
of New Zealand: integrated studies of their geological history in relation to neighbouring terranes. Episodes 21, 
4, p. 235-240. 
(Review of Permian-Cretaceous of Torlesse, Waipapa and Caples sedimentary terranes of E New Zealand, 
originally part of E Gondwana margin) 
 
Adams, C.J., H.J. Campbell & W.L. Griffin (2007)- Provenance comparisons of Permian to Jurassic 
tectonostratigraphic terranes in New Zealand: perspectives from detrital zircon age patterns. Geol. Magazine 
144, 4, p. 701-729. 
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(Zircon ages for 20 Cretaceous-Carboniferous sandstones from 7 terranes of E New Zealand. Persistent, large 
Triassic-Permian (main peaks in ~240-265 Ma range) and few Devonian-Silurian populations. Extensive 
Triassic-Permian zircon sources only in New England Fold Belt and Hodgkinson Province of NE Australia and 
continuations into Tasman Sea) 
 
Adams, C.J., D. Cluzel & W.L. Griffin (2009)- Detrital-zircon ages and geochemistry of sedimentary rocks in 
basement Mesozoic terranes and their cover rocks in New Caledonia, and provenances at the eastern 
Gondwanaland margin. Australian J. Earth Sci. 56, p. 1023-1047. 
(Older (>250 Ma), zircons in New Caledonia sediments >90% Early Paleozoic and Precambrian ages (500-
700 Ma). Surprisingly few zircons in M Permian- E Triassic (245-270 Ma) age range, presumably due to 
depocenters and barriers between area and New England Orogen) 
 
Adams, C.J. & S. Kelley (1998)- Provenance of Permian-Triassic and Ordovician metagraywacke terranes in 
New Zealand: evidence from 40Ar/39Ar dating of detrital micas. Geol. Soc. America (GSA) Bull. 110, p. 422-
432. 
(Permo-Triassic ages of detrital muscovite in New Zealand Torlesse terrane similar to ages of granites in New 
England foldbelt (but these granites contain very rare muscovite; Murray 2003)) 
 
Adams, C.J., R.J. Pankhurst, R. Maas, I.L. Millar (2005)- Nd and Sr isotopic signatures of metasedimentary 
rocks around the South Pacific margin and implications for their provenance. Geol. Soc., London, Spec. Publ. 
246, p. 113-141. 
(Nd-Sr isotope database of Paleozoic- Mesozoic metasedimentary successions enables characterization of New 
Zealand terranes) 
 
Agard, P. & A. Vitale-Brovarone (2013)- Thermal regime of continental subduction: the record from exhumed 
HP-LT terranes (New Caledonia, Oman, Corsica). Tectonophysics 601, p. 206-215. 
(Thermal evolutions of shift from oceanic subduction to continental collision retrieved from three well-
documented fossil settings, incl. New Caledonia, that were not modified by later collision or metamorphism. 
Continental cover units subducted over short time (~10 My) represent cold underplated material that buffers 
subduction thermal regime) 
 
Aitchison, J.C., G. L. Clarke, S. Meffre & D. Cluzel (1995)- Eocene arc-continent collision in New Caledonia 
and implications for regional southwest Pacific tectonic evolution. Geology 23, 2, p. 161-164. 
(New Caledonia geology four main tectonic phases: (1) E Mesozoic development of subduction-related terranes 
and accretion to Gondwana (NE Australia) margin; (2) Late Cretaceous passive margin development and sea-
floor spreading during Gondwana breakup; (3) Late Eocene arrival of thinned Gondwana margin crust at SW-
facing subduction zone (Loyalty-D'Entrecasteaux arc), resulting in collisional orogenesis and obduction of 
ophiolitic nappe from NE; and (4) detachment faulting during extensional collapse, resulting in unroofing of 
metamorphic core complexes) 
 
Aitchison, J.C., T.R. Ireland, G.L. Clarke, D. Cluzel, A.M.Davis & S. Meffre (1998)- Regional implications of 
U/Pb SHRIMP age constraints on the tectonic evolution of New Caledonia. Tectonophysics 299, 4, p. 333-343. 
(Ages for zircons from plagiogranites (considered to be late stage differentiates of basic magma in ophiolite 
complex) indicate latest Carboniferous- earliest Permian age for basement of Koh terrane in Central Chain Mts 
of New Caledonia (pre-Upper Cretaceous obduction). Ophiolites ages of 302±7 Ma and 290±5 Ma, 
respectively. Similar to plagiogranites in Dun Mountain Ophiolite Belt/ Maitai terrane of New Zealand) 
 
Aitchison, J.C., S. Meffre & D. Cluzel (1995)- Cretaceous/Tertiary radiolarians from New Caledonia. Geol. 
Soc. New Zealand, Misc. Publ. 81A, p. 1-70. 
 
Ali, J.R. & J.C. Aitchison (2000)- Significance of palaeomagnetic data from the oceanic Poya Terrane, New 
Caledonia, for SW Pacific tectonic models. Earth Planetary Sci. Letters 177, p. 153-161. 
(Paleomagnetic study of pillow basalts and associated pelagic sediments of Late Cretaceous-Paleocene Poya 
Terrane nappe that was thrust SW over New Caledonia island in M Eocene. Data from four outcrops suggests 
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formation at ~37.8° (± 12.1°). S. Poya Terrane formed close to New Caledonian portion of Indo-Australia 
plate, consistent with tectonic models suggesting Poya Terrane formed in marginal basin NE of New Caledonia 
during break-up of E Gondwana) 
 
Ali, J.R. & J.C. Aitchison (2002)- Paleomagnetic-tectonic study of the New Caledonia Koh Ophiolite and the 
mid-Eocene obduction of the Poya Terrane. New Zealand J. Geol. Geophysics 45, p. 313-322. 
(online at: www.tandfonline.com/doi/pdf/10.1080/00288306.2002.9514976) 
(Paleomagnetic study on allochthonous Late Paleozoic Koh Ophiolite of New Caledonia. Large spread of 
directions, impossible to deduce latitude of ophiolite formation: 'subequatorial to mid-latitude S Hemisphere 
location' strongest justifiable statement. Overprint equates to paleolatitude of 37.6 ± 6.2°S and may correspond 
to position of New Caledonia when overthust by oceanic Poya Terrane in M Eocene) 
 
Aronson, J.L. & G.R. Tilton (1971)- Probable Precambrian detrital zircons in New Caledonia and Southwest 
Pacific continental structure. Geol. Soc. America (GSA) Bull. 82, p. 3449-3456. 
(Detrital zircons from Cretaceous arkosic sandstone of SW New Caledonia mainly clear, euhedral and of Late 
Cretaceous ago. Also 1% rounded colored grains, probably with age of 1000 Ma or more. Old grains probably 
derived from Lord Howe Rise, a foundered extension of Australian continent) 
 
Audet, M.A. (2009)- Le massif du Koniambo, Nouvelle-Caledonie. Formation et obduction d’un complexe 
ophiolitique du type SSZ. Enrichissement en nickel, cobalt et scandium dans les profils residuels. Doct. Thesis 
Universite de Quebec, Montreal, p. 1-294.  (Unpublished) 
(online at: http://portail-documentaire.univ-nc.nc/userfiles/TheseMarcAntoineAudet2008.pdf) 
(On Koniambo ophiolitic complex in New Caledonia and distribution of nickel, cobalt, scandium in weathered 
profile. Various geological units in study area are inverted structural assemblages of ophiolite suite, affected by 
passage through supra-subduction environment. Contrast with less dismembered ultramafic sequences of 
Massif du Sud. Late Eocene obduction) 
 
Auzende, J.M., G. Beneton, G. Dickens, N. Exon, C. Francois, D. Hodway, F. Juffroy, Y. Lafoy, A. Leroy, S. 
van de Beuque & O. Voutay (2000)- Mise en evidence de diapirs mesozoiques sur la bordure orientale de la ride 
de Lord Howe (Sud-Ouest Pacifique): campagne ZoNeCo 5. Comptes Rendus Academie Sciences, Paris, Ser. 2, 
330, 3, p. 209-215. 
('Evidence of Mesozoic salt or mud diapyrs on the eastern side of the Lord Howe Rise') 
 
Auzende, J.M., G.R. Dickens, S. Van de Beuque, N.F. Exon, C. Francois, Y. Lafoy & O. Voutay (2000)- 
Thinned crust in southwest Pacific may harbor gas hydrate. EOS, Trans. AGU, 81, 17, p. 182-185. 
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mainly harzburgitic allochthonous Ophiolitic Nappe (2) Poya Terrane intermediate mafic, mainly basaltic off-
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radiochronological data on detrital zircons'. Presence of 191-200 Ma detrital zircons in Boghen terrane 
metasediments that were metamorphosed at 150 Ma suggests Jurassic sedimentary precursors (probably as 
Jurassic accretionary complex along E Gondwana active margin), metamorphosed soon after deposition. 
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25-30° S, and may have persisted until Callovian when area had moved to 35-40° S. Large number of buildups 
identified in N Carnarvon S of ODP sites, presumed to be Jurassic buildups, sitting on horst blocks of Triassic 
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Large undeveloped gas resources (41 TCF), development of Ichthys and Prelude fields. Seven supersequences 
from late Tithonian- Maastrichtian (K10-K60)) 
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J. 56, 1, p. 483-494. 
(Browse Basin hosts large gas accumulations. Drilling focused in C Caswell Sub-basin (Ichthys, Prelude), and 
Brecknock-Scott Reef Trend. New sequence stratigraphy of Cretaceous succession and structural framework. 
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(Browse Basin non-tropical carbonate ramp in Eocene- E Miocene, changing to tropical rimmed platform in 
M Miocene. First reef structures in early M Miocene as narrow linear belts oblique to shelf strike direction. 
Subsequent progradation forms barrier reef of >40 km. Three ridges separated by progradational steps. 
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(S Exmouth oil fields in Latest Tithonian- E Berriasian P. iehiense zone lowstand sands in rotated fault blocks, 
sourced by Late Jurassic Dingo claystone, sealed by intra-Hauterivian unconformity shales) 
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(Detrital zircon samples from W Australia placer deposits dominated by Neoproterozoic and Mesoproterozic 
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Southgate, P., K.N. Sircombe and C.J. Lewis (2011)- New insights into reservoir sand provenance in the 
Exmouth Plateau and Browse Basin. Proc. APPEA Conf., Perth 2011.  (Extended abstract and presentation) 
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Blanfordiceras (Mollusca, Cephalopoda) from Fortissimo-1 wildcat well, Browse basin, Northwest Shelf, 
Australia. J. Paleontology 85, 3, p. 551-554. 
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Bureau Mineral Res. Geol. Geoph. Bull. 97, p. 1-155. 
(online at: www.ga.gov.au/corporate_data/149/Bull_097.pdf) 
(Bonaparte Gulf Basin of NW Australia extends beneath Timor Sea. Rel. complete Paleozoic section of shelfal 
marine sediments. U Devonian- Lower Carboniferous sediments known only in S, where unconformably overlies 
Precambrian, Cambrian and Lower Ordovician rocks, and unconformably overlain by U Carboniferous- 
Permian sediments. Faulting along E margin in Frasnian. Frasnian- E Tournaisian carbonate reef complexes on 
NW part of platform. Shale covered platform in E Visean. In Permian, step faults along E margin reactivated) 
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Veevers, J.J., J.W. Tayton & B.D. Johnson (1985)- Prominent magnetic anomaly along the continent ocean 
boundary between the northwestern margin of Australia (Exmouth and Scott Plateaus and the Argo Abyssal 
Plain). Earth Planetary Sci. Letters 72, p. 415-426. 
(Prominent positive magnetic anomaly along lower slope between N Exmouth Plateau and Argo Abyssal Plain. It 
lies along Continent-Ocean boundary and is interpreted as complex of rift-related dykes in continental crust and 
adjacent oceanic crust) 
 
Veevers, J.J. & T.H. Van Andel (1967)- Morphology and basement of the Sahul Shelf. Marine Geology 5, 4, p. 
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(Aeromagnetic survey suggests correspondence of submarine shelf morphology with top surface of magnetic 
basement) 
 
Volkman, J.K., R. Alexander, R.I. Kagi, R.A. Noble & G.W. Woodhouse (1983)- A geochemical reconstruction 
of oil generation in the Barrow sub-basin of Western Australia. Geochimica Cosmochimica Acta 47, 12, p. 2091-
2105. 
(Biomarkers from crude oils from Barrow sub-basin, NW Australian shelf sourced from Upper Jurassic Dingo 
Claystone Fm) 
 
Von Rad, U. & T.J. Bralower (1992)- Unique record of an incipient ocean basin: Lower Cretaceous sediments 
from the southern margin of Tethys. Geology 20, p. 551-555. 
(Wombat Plateau Site 761 three Berriasian-Valanginian fining-upward units above breakup unconformity: (1) 
barren fine sand, (2) fining-upward very fine sand with belemnites (incl. Belemnopsis cf jonkeri and ?Hibolithes), 
and (3) calcisphere-nannofossil chalk with volcanic ash layers) 
 
Von Rad, U. & N.F. Exon (1982)- Mesozoic-Cenozoic sedimentary and volcanic evolution of the starved passive 
continental margin off Northwest Australia. In: J.S. Watkins & C.L. Drake (eds.) Studies in continental margin 
geology, American Assoc. Petrol. Geol. (AAPG), Mem. 34, p. 253-281. 
 
Von Rad, U., N.F. Exon, R. Boyd & B.U. Haq (1992)- Mesozoic paleoenvironments of the rifted margin off NW 
Australia (ODP legs 122/123). In: R.A. Duncan et al. (eds.) Synthesis of results from Scientific Drilling in the 
Indian Ocean. American Geophys. Union (AGU), Geophys. Monograph 70, p. 157-184. 
(NW Australia in early Mesozoic time was passive margin of E Gondwana, facing S Tethys Sea. Wombat Plateau: 
U Triassic synrift fluviodeltaic to carbonate platform deposits; earliest Jurassic platform drowning and early-rift 
volcanism; Callovian-Oxfordian block faulting and formation of ‘post-rift unconformity’ and ocean formation at 
Argo Abyssal Plain; Berriasian rapid subsidence and condensed section of terrigenous littoral sands, belemnite-
rich sandy muds and calcisphere-nannofossil chalks; Albian-Cenomanian gradual transition from hemipelagic to 
pelagic conditions. C Exmouth Plateau failed Late Jurassic breakup, followed by uplift of southern hinterland, 
erosion and N-ward progradation of Berriasian shelf-margin clastic wedge, overlain by condensed Valanginian 
section, followed by late Valanginian-early Hauterivian final breakup between Australia and Greater India) 
 
Von Rad, U., N.F. Exon & B.U. Haq (1992)- Rift-to-drift history of the Wombat Plateau, northwest Australia: 
Triassic to Tertiary Leg 122 results. Proc. Ocean Drilling Program (ODP), Scient. Results 122, College Station, 
TX, p. 765-800. 
 
Von Rad, U., B.U. Haq et al. (1992)- Proceedings of the Ocean Drilling Program (ODP), Scientific Results 122. 
Ocean Drilling Program, College Station, TX, p. 1-904. 
(Scientific results of ODP work on Exmouth and Wombat Plateaus) 
 
Von Rad, U., M. Schott, N.F. Exon, J. Mutterlose, P.G. Quilty & J.Thurow (1990)- Mesozoic sedimentary and 
volcanic rocks dredged from the northern Exmouth Plateau: petrography and microfacies. BMR J. Australian 
Geol. Geophysics 11, p. 449-472. 
(online at: www.ga.gov.au/metadata-gateway/metadata/record/81271/) 
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(Deeply incised N margin of Exmouth Plateau dredged along seismic reflection profiles in 2000-5600m water. 
With: (1) Late Triassic- E Liassic mixed early rift volcanics (K-Ar ages 213, 192 Ma), (2) Late Triassic- M 
Jurassic shallow water carbonate (with microfacies similar to coeval platform carbonates in Alps and 
Mediterranean area of Tethys Ocean), (3) ?Late Triassic- M Jurassic uplifted and weathered coals and very 
mature quartz sandstones, (4) latest Triassic- earliest Jurassic red biomicrites shoals and basinal hemipelagic 
micrites with redeposited calciturbidites. Uplifted horst blocks like Wombat Plateau subaerially eroded in 
Jurassic or earliest Cretaceous. Following breakup to form Argo Abyssal Plain in earliest Cretaceous deposition 
of (5) Lower Cretaceous marginal marine claystones, followed by (6) hemipelagic late Lower Cretaceous 
radiolarian clays. From Turonian increasingly pelagic deposition) 
 
Von Rad U., J. Thurow, B.U. Haq, F. Gradstein et al. (1989)- Triassic to Cenozoic evolution of the NW 
Australian continental margin and the birth of the Indian Ocean (preliminary results of ODP Legs 122 and 123). 
Geol. Rundschau 78, 3, p. 1189-1210. 
 
Von Stackelberg, U., N.F. Exon, U. von Rad, P. Quilty, S. Shafik, H. Beiersdorf, E. Seibertz & J.J. Veevers 
(1981)- Geology of the Exmouth and Wallaby Plateaus off northwest Australia: sampling of seismic sequences. 
BMR J. Australian Geol. Geophysics 5, 2, p. 113-140. 
(online at: https://d28rz98at9flks.cloudfront.net/81034/Jou1980_v5_n2_p113.pdf) 
 
Walker, T. (2007)- Deepwater and frontier exploration in Australia- historical perspectives, present environment 
and likely future trends. APPEA J. 47, p. 15-38. 
 
Walker, T.R. & A.J. Kantsler (2004)- Deepwater and frontier exploration in Australia- a historical perspective 
and a view to the future. In: R.A. Noble et al. (eds.) Proc. Deepwater and Frontier Exploration in Asia and 
Australasia Symposium, Jakarta, Indon. Petroleum Assoc. (IPA), p. 471-480. 
 
Warris, B.J. (1993)- The hydrocarbon potential of the Paleozoic basins of Western Australia. Australian Petrol. 
Explor. Assoc. (APEA) J. 33, l, p. 123-137. 
 
Waterhouse, J.B. (1987)- Late Palaeozoic brachiopoda (Athyrida, Spiriferida and Terebratulida) from the 
Southeast Bowen Basin, East Australia. Palaeontographica, A, 196, p. 1-56. 
 
Waterhouse, J.B. (2011)- Origin and evolution of Permian brachiopods of Australia. Mem. Assoc. Australasian 
Palaeont. 41, p. 205-228. 
(Permian brachiopods of Australia two main associations: (1) E Australia, few families, affected by cool- 
glacial conditions, interspersed with few warmer-water faunas; (2) W Australia more like faunas of SE Asia 
and Himalayan region. Played major role in stocking Lopingian faunas of S Asia, especially Himalayas. No 
mention of any Indonesian faunas) 
 
Webster, G.D. (1987)- Permian crinoids from the type-section of the Callytharra Formation, Callytharra 
Springs, Western Australia. Alcheringa 11, 2, p. 95-135. 
(E Permian Callythara Fm in Carnarvon Basin, W Australia, with limestone beds with diverse crinoid 
assemblage of 40 species. Most likely age ~Sakmarian. Eleven species also known from Timor (150 crinoid 
species, generally believed be of Late Permian age, but may be incorrect), but Australian faunas less diverse 
and many endemics) 
 
Webster, G.D. (1990)- New Permian crinoids from Australia. Palaeontology 33, p. 49-74. 
(online at: http://cdn.palass.org/publications/palaeontology/volume_33/pdf/vol33_part1_pp49-74.pdf) 
(13 new species of E Permian crinoids mainly from Teichert collections in W Australia. Australian crinoids 
cooler water assemblages. 114 species identified, 53 from W Australia, 51 from East Australia, with no species 
common to both regions) 
 
Webster, G.D. & P.A. Jell (1992)- Permian echinoderms from Western Australia. Mem. Queensland Museum 
32, 1, p. 311-373. 
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West, B.G. & V.L. Passmore (1994)- Hydrocarbon potential of the Bathurst Island Group, northeast Bonaparte 
Basin, implications for future exploration. Australian Petrol. Explor. Assoc. (APEA) J. 34, p. 626-643. 
 
Westphal, H. & T. Aigner (1997)- Seismic stratigraphy and subsidence analysis in the Barrow-Dampier 
Subbasin, Northwest Australia. American Assoc. Petrol. Geol. (AAPG) Bull. 81, 10, p. 1721-1749. 
 
Whibley, M. & E. Jacobson (1990)- Exploration in the northern Bonaparte Basin, Timor Sea, WA-199-P. The 
Australian Petrol. Explor. Assoc. (APEA) J. 30, 1, p. 7-25. 
 
Whitney, B.B. & J.V. Hengesh (2015)- Geomorphological evidence of neotectonic deformation in the Carnarvon 
Basin, Western Australia. Geomorphology 228, p. 579-596. 
 
Whittaker, J.M., J.A. Halpin, S.E. Williams, L.S. Hall, N.R. Daczko, R. Gardner, M.E. Kobler & R.D. Muller 
(2013)- Tectonic evolution and continental fragmentation of the southern West Australian margin. In: M. Keep & 
S.J. Moss (eds.) The sedimentary basins of Western Australia IV, Proc. Petroleum Expl. Soc. Australia (PESA) 
Symposium, Perth, 16p. 
(Companion paper to Williams et al. 2013. Metamorphic and granitic rocks and sandstones dredged from 
Batavia and Gulden Draak knolls show these are micro-continents. Geochronology of Gulden Draak Knoll felsic 
orthogneiss indicate original granites ages Archean (~2850 Ma) and Mesoproterozoic (~1230-1200 Ma). Zircon 
data from metapelite suggests deposition of protolith sediments between 2800-1200 Ma. All rocks affected by 
high-grade metamorphism at ~500 Ma. Late Neoproterozoic- Cambrian (540-530 Ma) granite gneisses and 
granites from Batavia Knoll emplaced during and soon after collisional tectonism along Kuunga Orogen) 
 
Whittam, D.B., M.S. Norvick & C.L. McIntyre (1996)- Mesozoic and Cainozoic tectonostratigraphy of western 
ZOCA and adjacent areas. Australian Petrol. Prod. Explor. Assoc. (APPEA) J. 36, 1, p. 209-231. 
 
Williams, S.E., J.M. Whittaker, R. Granot & R.D. Muller (2013)- Early India-Australia spreading history 
revealed by newly detected Mesozoic magnetic anomalies in the Perth Abyssal Plain. J. Geophysical Research, 
Solid Earth, 118, 7, p. 3275-3284. 
(Seafloor of Perth Abyssal Plain off W Australia records early spreading history between India and Australia in 
E Cretaceous breakup. New magnetic anomaly shows crust in W part of basin was part of Indian Plate 
(conjugate flank to oceanic crust offshore Perth margin). Gulden Draak and Batavia Knolls are microcontinental 
fragments that rifted away from Australia with Greater India during initial breakup at ~130Ma (~Hauterivian- 
Barremian), then rifted from India following cessation of spreading in Perth Abyssal Plain in Albian (~101-
103Ma)) 
 
Williams, S.E., J.M. Whittaker & R.D. Muller (2013)- Newly-recognised continental fragments rifted from the 
West Australian Margin. In: M. Keep & S.J. Moss (eds.) The sedimentary basins of Western Australia IV, Proc. 
Petroleum Expl. Soc. Australia (PESA) Symposium, Perth, 9p. 
(Batavia Knoll and Gulden Draak Knoll prominent bathymetric features located >1600 km offshoreW Australia 
recently recovered continental basement rocks, revealing that both knolls are extended microcontinents. These 
initially rifted with Greater India during breakup with Australia at ~130 Ma, then rifted off India after W-ward 
ridge jump at ~105-100Ma) 
 
Williamson, P.E., N.F. Exon, B.U. Haq, U. von Rad, S. O'Connell and Leg 122 Shipboard Scientific Party 
(1989)- A Northwest Shelf Triassic reef play: results from ODP Leg 122. Australian Petrol. Explor. Assoc. 
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Williamson, T. (2006)- Systematics and biostratigraphy of Australian Early Cretaceous belemnites with 
contributions to the timescale and palaeoenvironmental assessment of the early Australian Early Cretaceous 
system derived from stable isotope proxies. Ph.D. Thesis, James Cook University, p. 1-106.   (Unpublished) 
(online at: http://eprints.jcu.edu.au/4906/) 
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(Aptian- Cenomanian belemnites from NW Australia. Oxygen-isotope values from Carnarvon Basin continental 
margin system indicate S Hemisphere mid-latitude Late Aptian sea surface temperatures, similar to today's. 
Warming trend in Albian-Cenomanian, representing greenhouse climatic conditions) 
 
Willis, I. (1988)- Results of exploration, Browse Basin. In: P.G. & R.R. Purcell (eds.) The North West Shelf, 
Australia, Proc. Petroleum Expl. Soc. Australia (PESA) Symposium, p. 259-272. 
(Exploration of Browse Basin since first discovery in 1963. Four gas discoveries, in M Jurassic sandstones: Scott 
Reef (1971), Brecknock (1979), North Scott Reef (1982) and Echuca Shoals (1983)) 
 
Willmott, W.F., W.G. Whitaker, W.D. Palfreyman & D.S. Trail (1973)- Igneous and metamorphic rocks of Cape 
York Peninsula and Torres Strait. Bureau Mineral Res. Geol. Geoph. Bull. 135, p. 1-144. 
(online at: www.ga.gov.au/  ) 
(Broad ridge of Precambrian- Paleozoic igneous and metamorphic rocks extends for 450 km along E side of 
Cape York Peninsula, from where submerged ridge of Paleozoic igneous rocks extends across Torres Strait to 
PNG. Metamorphic grade increases E-wards from phyllite to gneiss. Cape York Peninsula Batholith probably M 
Paleozoic age. Lower Carboniferous coal-bearing sediments in small basins. Thick sheets of acid welded tuff in 
Torres Strait probably Carboniferous age; associated high-level granites S of Temple Bay are Late 
Carboniferous or E Permian (Badu granite K/Ar 294± 5 Ma). Mesozoic, coarse sandstone followed by finer 
sediments in trough between two basement ridges) 
 
Wingate, M.T.D. & D.A.D. Evans (2003)- Paleomagnetic constraints on the Proterozoic tectonic evolution of 
Australia. In: M. Yoshida et al. (eds.) Proterozoic East Gondwana: supercontinent assembly and breakup, Geol. 
Soc. London, Spec. Publ. 206, p. 77-91. 
(Discusssion of Proterozoic assembly of tectonic blocks of Australia. N and W Australian cratonic assemblages 
in present relative positions since 1.7 Ga and joined to S Australian cratonic assemblage since at least 1.5 Ga) 
 
Woods, E.P. (1994)- A salt-related detachment model for the development of the Vulcan Sub-basin. In: P.G. & 
R.R.Purcell (eds.) The sedimentary basins of Western Australia, Proc. Petroleum Expl. Soc. Australia (PESA) 
Symposium, p. 259-274. 
(Late Jurassic extensional structuring in Vulcan sub-basin (between Browse and Bonaparte) at or immediately 
after time of continental breakup to W. Deep salt layer (Silurian- Devonian?) may act as detachment surface. 
Salt-related detachment explains nature of deep grabens at Swan and Paqualin and also occurrence of salt 
diapirs in these grabens (627m in Paqualin 1 well, Swan diapir). Renewed normal faulting, tied to Timor 
collision, began in Late Miocene, peaking in Pliocene, not active today) 
 
Woods, E.P. (1998)- Extensional structures of the Jabiru Terrace, Vulcan sub-basin. In: P.G. & R.R. Purcell 
(eds.) The North West Shelf, Australia. Proc. North West Shelf Symposium, Petroleum Expl. Soc. Australia 
(PESA), p. 311-330. 
(Sandbox models to recreate Miocene 'hourglass structures' at Jabiru Terrace area. Localised graben in shallow 
section is good indicator of an underlying Jurassic horst structure) 
 
Woods, E.P. (2004)- A salt-related detachment model for the development of the Vulcan sub-basin. In: P.G. & 
R.R. Purcell (eds.) The sedimentary basins of Western Australia, Proc. Petroleum Expl. Soc. Australia (PESA) 
Symposium, Perth 1994, p. 259-273. 
 
Woods, E.P. (2004)- Twenty years of Vulcan Sub-basin exploration since Jabiru- what lessons have been learnt? 
In: G.K. Ellis et al. (eds.) Timor Sea Symposium Darwin 2003, Northern Territory Geol. Survey, Darwin, p. 83-
97. 
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Wormald, G.B. (1988)- The geology of the Challis oilfield- Timor Sea, Australia. In: Petroleum in Australia: the 
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Wright, C.A. (1977)- Distribution of Cainozoic foraminiferida in the Scott Reef No. 1 well, Western Australia. 
J. Geol. Soc. Australia 24, 5, p. 269-277. 
(Maastrichtian- Recent larger and planktonic foram zonation in well in Browse Basin, Australia NW Shelf. Rich 
planktonic faunas of Lower Paleocene- Lower Eocene (P1c-P6) and Oligocene- Lower Miocene to (P19-N6). 
In-between barren or shallow water larger foraminifera like Nephrolepidina, Discocyclina, etc.) 
 
Wright, C.A. & M. Apthorpe (1976)- Planktonic foraminiferids from the Maastrichtian of the Northwest Shelf, 
Western Australia. J. Foraminiferal Research 6, p. 228-240. 
Online at: http://jfr.geoscienceworld.org/content/6/3/228.full.pdf) 
(Twenty-five planktonic foram species recorded in wells on NW Shelf and used to erect three biostratigraphic 
zones. Overall tropical and subtropical character of fauna appears inconsistent with palaeomagnetic studies 
which place NW Australia at cool temperate latitude of perhaps as much as 40° S. during. Late Cretaceous) 
 
Wright, C.W. (1963)- Cretaceous ammonites from Bathurst Island, Australia. Palaeontology 6, 4, p. 597-614. 
(online at: http://palaeontology.palass-pubs.org/pdf/Vol%206/Pages%20597-614.pdf) 
(16 species of Albian- Turonian ammonites off N Australia. Mainly new species, mostly endemics?) 
 
Wulff, K.J. (1992)- Depositional history and facies analysis of the Upper Jurassic sediments in the eastern 
Barrow Subbasin. The APEA Journal 32, 1, p. l04-122. 
 
Wulff, K. & P. Barber (1995)- Tectonic controls on the sequence stratigraphy of Late Jurassic fan systems in the 
Barrow-Dampier Basin, North West Shelf. Australia. Petroleum Expl. Soc. Australia (PESA) Journal 23, p. 77-
89. 
(U Jurassic syn-rift sediments in Barrow-Dampier Basin subdivided into nine depositional sequences. Sequence 
boundary development related to tectonically-induced changes in basin architecture, associated with continental 
break-up of E Gondwanaland. Callovian-Oxfordian deposition whilst Barrow and Dampier were two separate 
sub-basins separated by intra-basinal arch; Kimmeridgian-Tithonian deposits more widespread) 
 
Yeates, A.N., M.T. Bradshaw, J.M. Dickins, A.T. Brakel, N.F. Exon et al. (1987)- The Westralian Superbasin: an 
Australian link with Tethys. In: K.G. McKenzie (ed.) Shallow Tethys 2, A.A. Balkema, Rotterdam, p. 199-213. 
 
Yeates, A.N., D.L. Gibson, R.R. Towner and R.W.A. Crowe (1984)- Regional geology of the onshore Canning 
Basin, W.A.. In: The Canning Basin, Western Australia, Petroleum Expl. Soc. Australia (PESA), p. 23-55. 
(Onshore Canning Basin (W Australia) history began in E Ordovician ands largely completed by E Cretaceous.  
Up to M Triassic sedimentation in NW-trending depocenters; Jurassic-Cretaceous sequence relates to break-up 
of Gondwanaland, and global E Cretaceous rise in sea level) 
 
Yang, X.M. & C. Elders (2016)- The Mesozoic structural evolution of the Gorgon Platform, North Carnarvon 
Basin, Australia. Australian J. Earth Sci. 63, 6, p. 755-770. 
(Gorgon Platform on SE edge of Exmouth Plateau in N Carnarvon Basin. Four major sets of extensional faults, 
controlled by three different extensional events in E-M Jurassic, Late Jurassic and E Cretaceous, all creating 
unconformities) 
 
Young, L.F., T.M. Schmedje & W.F. Muir (1995)- The Elang oil discovery bridges the gap in the Eastern Timor 
Sea (Timor Gap zone of cooperation). Proc. 24th Ann. Conv. Indon. Petroleum Assoc. (IPA), Jakarta, p. 47-69. 
(Elang-1 1994 oil discovery in Timor Gap Zone of Cooperation established new oil province in E Timor Sea. 
Tested 5800 BOPD from marine Late Jurassic Montara sandstones. Oil light (56° API). On Elang Trend, a 
prominent structural high established during continental breakup in Late Jurassic) 
 
Young, L.F., T.M. Schmedje & W.F. Muir (1995)- The Elang oil discovery establishes a new oil province in 
Eastern Timor Sea (Timor Gap ZOCA). Australian Petrol. Explor. Assoc. (APEA) J. 35, 1, p. 44-64. 
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Zachariasse, W.J. (1992)- Neogene planktonic foraminifera from Sites 761 and 762 off northwest Australia. In: 
U. von Rad, B.U. Haq et al. (eds.) Proc. Ocean Drilling Program (ODP), Scient. Results 122, College Station, p. 
665-675. 
(online at: www-odp.tamu.edu/publications/122_SR/VOLUME/CHAPTERS/sr122_39.pdf) 
(Diverse, warm-water Late Oligocene-Recent planktonic foram faunas on Wombat and Exmouth plateaus, 
despite N-ward drift of Australia across 10°-15° latitude since E Miocene. Invasions of cool-water species 
during periods of global cooling in late M Miocene (replacement of warm water Paragloborotalia mayeri by 
Globorotalia partimlabiata), Late Miocene (common cool-water Globorotalia conoidea just after coiling 
change in Neogloboquadrina humerosa) and Pleistocene (common cool-water Globorotalia inflata)) 
 
Zaninetti, L., R. Martini & T. Dumont (1992)- Triassic foraminifers from sites 761 and 764, Wombat Plateau, 
Northwest Australia. In: U. von Rad, B.U. Haq et al. (eds.) Proc. Ocean Drilling Program (ODP), Scient. Results 
122, p. 427-436. 
(online at: www-odp.tamu.edu/publications/122_SR/VOLUME/CHAPTERS/sr122_24.pdf) 
(Late Norian (Triasina oberhauseri) and Rhaetian (Triasina hantkeni) forams from ~250m thick Late Triassic 
reefal-platform carbonate section in ODP cores from Wombat Plateau at edge of Argo Abussal Plain, NW 
Australia. Reefal carbonate platform with inner shelf (intertidal to lagoon), patch reef, and outer shelf facies. 
Close affinity to microfauna of Seram. First record of Galeanella? laticarinata outside Seram) 
 
Zhan, Y. & A.J. Mory (2013)- Structural interpretation of the Northern Canning Basin, Western Australia. West 
Australian Basins Symposium, Perth 2013, Session 9, p. 1-17. 
(Seismic profiles in N Canning Basin reveal major WNW-oriented strike-slip fault zone in Fitzroy Trough, 
generated during Late Triassic-E Jurassic 'Fitzroy Transpression'. With NW-oriented fault splays indicative of 
right-lateral slip. Deformation at this time also produced N-S compression and E-W extension) 
 
Zhen, Y.Y. & R.S. Nicoll (2009)- Biogeographic and biostratigraphic implications of the Serratognathus 
bilobatus Fauna (Conodonta) from the Emanuel Formation (Early Ordovician) of the Canning Basin, Western 
Australia. Records Australian Museum, Sydney 61, p. 1-30. 
(Discovery of Serratognathus bilobatus in E Ordovician Emanuel Fm of Canning Basin indicates biogeographic 
link between Australia and E Gondwanan plates in E Ordovician and formation of 'Australasian Province'. S. 
bilobatus fauna from Canning Basin is more diverse than coeval Chinese Lower Ordovician successions and 
probably represents assemblage inhabiting relatively deeper water (mid-outer shelf) facies. Also present in Setul 
Lst, Malaysia. E Ordovician paleobiogeographic reconstruction shows E Gondwana shows Australia- New 
Guinea in equatorial position) 
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IX.16. NE Australia margin ('Tasmanides') 
 

Adams, C. & R. Korsch (2010)- Crossing the Tasman: tracking Torlesse Terrane rocks from New Zealand into 
the New England Orogen. 20th Australian Geological Convention, Canberra 2010, Geol. Soc. Australia, 
Abstracts 98, p. 71-72.  (Abstract only) 
(New Zealand Torlesse Supergroup extensive Permian-Cretaceous accretionary wedge of quartzose greywacke 
turbidites. Provenances continent‐derived, plutonic rock, best match with Carboniferous, Permian and Triassic 
sources in New England Orogen, with some Cambrian and Ordovician. Jurassic-Cretaceous ages dominant in 
North Island, Late Permian-Triassic in South Island. Oldest horizons close to S-most edge of terrane, with 
slivers with Late Carboniferous limestone, probably oceanic seamount and pelagic seafloor assemblages upon 
which Torlesse was later deposited. Oldest Torlesse records M Permian initiation (~270 Ma) of major Late 
Permian‐Triassic accretionary phase, supplied by erosion of contemporaneous magmatic arcs in E Australia) 
 
Aitchison, J. (1990)- Significance of Devonian-Carboniferous radiolarians from accretionary terranes of the 
New England orogen, eastern Australia. Marine Micropaleontology 15, p. 365-378. 
(Radiolarians provide age constraints for terranes in New England tectonic collage along E margin of 
Australia. Djungati terrane two siliceous sediment lithofacies: M Silurian- Late Devonian ocean-floor red, 
ribbon-bedded cherts and latest Devonian green tuffaceous cherts. Anaiwan terrane with latest Devonian and E 
Carboniferous radiolarians in cherts and tuffaceous siltstones. Yarrimie Fm of Gamilaroi terrane with Late 
Devonian (Frasnian) radiolarians and allochthonous blocks of limestone with Givetian conodonts and corals) 
 
Aitchison, J., M.C. Blake, P.G. Flood & A.S. Jayko (1994)- Paleozoic ophiolite assemblages within the 
southern New England Orogen of eastern Australia: implications for the growth of the Gondwana margin. 
Tectonics, 13, 1135-1149. 
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Late Permian-Triassic calc-alkaline igneous activity in New England correlates with pyroclastic material in 
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Ma, with HT/LP metamorphism, ending long-lived subduction‐related magmatic arc activity in W New 
England. Followed by development of new E Permian arc (S‐type granites) and contemporaneous extensional 
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